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R!, Achiral — C5 symmetry 

R1, Chiral C1 symmetry 
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likely to occur when the anion is SCN - and the "available" 
hydrogen on the positively charged nitrogen is sterically ac­
cessible and relatively more acidic (i.e., when R' is Me, 
CH2Me, and CH2Ph rather than when R1 is CHMe2, CMe3, 
and CHMePh). 
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An Inhibitor for Aldolase 

Sir: 

Compound 1 was synthesized in order to determine if rabbit 
muscle aldolase would catalyze the elimination reaction shown 
in Scheme I in a manner similar to that found for primary 
amines in aqueous solution with a a-acetoxy or /3-hydroxy 
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Figure 1. A pH rate profile for the production of O2NPhOH from 1, which 
is fit by a line computed froiru' = k\[l2~] + k2 [ O H - ] [ I 2 - ] where k\ = 
1.30 X 10"4 S"1 and Ar2 = 2.13 M - 1 s - 1 . A value of pXa (ROPO3H -) = 
6.80 was used for the computation. The dashed line represents the corre­
sponding pH rate profile for 4-/?-nitrophenoxy-2-butanone.7 The term 
proportional to the dianion of 1 is ascribed to an intramolecular proton 
abstraction as shown. 

Scheme II 

O o o 

3a, X = OH 
b, X = Cl 
c, X = CH=N=N 

ketone.1'2 A reaction of this type would provide an interesting 
mechanistic probe of the active site and could also be a simple 
assay for this enzyme because of the generation of chromo-
phoric p-nitrophenoxide. Although no aldolase dependent 
production of p-nitrophenoxide has been observed with 1, it 
has been found that its elimination product 2 is a potent in­
hibitor for this enzyme. 

The synthesis of compound 1 involved the conversion of 3a, 
prepared from p-nitrophenol and /3-propiolactone,3 to the 
corresponding acid chloride 3b, using oxalyl chloride in ben­
zene (Scheme II).4 After removal of solvent, this material was 
added, without purification, to a 4 M excess of distilled di-
azomethane solution in diethyl ether and stirred for 10 min 
before removal of solvent to yield stable, crystalline 3c.5 This 
material was quantitatively converted to 1 by stirring a 4 X 
1O-3M solution of 3c in 1.5 X 10"2 M H3PO4 in benzene for 
48 h, and then extracting this solution with 30 mL of water to 
give an aqueous solution of 1. The addition of sodium hy­
droxide to this solution generated p-nitrophenoxide which 
allowed the concentration to be measured spectrophotomet-
rically. Removal of phosphate from 1 was accomplished by 
passing 30 mL of a 4 X 10 3 M aqueous solution of 1 through 
a 35 X 1.5 cm column of Sephadex G-15 and collecting the 
early fractions. Freezing and lyophilizing this solution yielded 
stable, crystalline 1 as the acid.6 

As shown in Figure 1, the pH-rate profile for the rate of 
formation of p-nitrophenol from 1 differs substantially from 
4-p-nitrophenoxy-2-butanone, 5, which has been shown to 
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500 1000 
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Figure 2. The upper plot shows the dependence of percent inactivation of 
aldolase on the concentration of 2 and the length of the incubation time 
with 2, consistent with a second-order rate constant for inactivation of 7,6 
X 10~2 M - 1 S-1. The lower plot demonstrates the protection afforded 
aldolase by various concentrations of DHAP, consistent with a Km of 1.4 
X 1O-6 M for this natural substrate. The percent activity measurements 
were performed on aliquots of incubation mixture at 37 CC. 

Scheme III 
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undergo rate-determining a-proton abstraction by general 
bases.7 In addition to hydroxide ion catalysis of enolization, 
a term proportional to the concentration of the dianion of 1 is 
apparent which does not appear in the pH-rate profile of 5. 
This term may most reasonably be ascribed to an intramo­
lecular proton abstraction by the phosphate dianion as pictured 
in Figure 1. By dividing the first-order rate constant for this 
process (1.30 X 1O-4 s-1) by the second-order rate constant 
for the reaction OfHPO4

--2 with 5 (3.5 X 1O-4 M - 1 s-1), which 
was measured under the same conditions, an effective molarity8 

of approximately 0.4 M may be computed. 
The elimination reaction of a 0.02 M solution of 1 in D2O 

adjusted to pD 7.0 was followed by 1H NMR and the disap­
pearance of 1 over the course of 24 h was coupled with the 
appearance of enone 2 (Scheme III).9 This material hydrated 
to the /3-hydroxy ketone 4a10 over a period of 2 weeks and did 
not decompose via retro-aldol reaction under these conditions 
even after 1 month, as shown by the lack of appearance of 
formaldehyde hydrate. The nondeuterated compound 4b was 
prepared in H2O and lyophilized and the spectrum taken in 
D2O showing the expected pair of triplets.1' The UV spectrum 
of 2 (X max 215 nm, t 6.0 X 103) was obtained by the extraction 
of a 10-mL, 10~3 M aqueous solution of 2 adjusted to pH 5.8, 
with 3 X 10 mL of Et2O, followed by bubbling nitrogen 
through the solution to remove the remaining Et2O. The peak 
due to the enone disappears if the solution is made basic, as is 
the case for methyl vinyl ketone and other enones.12,13 

When 1 is allowed to react with increasing concentrations 
of aldolase, no increase in the rate of production of p-nitro­
phenol is observed over the background rate. This may mean 
either that 1 does not undergo enzyme-catalyzed elimination 
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or that the elimination is followed by inactivation in the first 
few turnovers. The concentration of enzyme was not great 
enough to allow an initial burst to be seen. 

Compound 2 behaves as though it were an irreversible in­
hibitor since it shows time-dependent inactivation14 with a rate 
constant of 7.6 X 102 M - 1 s -1 , as shown in Figure 2. The 
percent inhibition of aldolase reactivity, measured by standard 
assay techniques,15 depends on both the concentration of 2 and 
the length of time with which it is incubated with enzyme. The 
reaction may in fact be reversible under appropriate experi­
mental conditions even though the equilibrium constant for 
formation of inhibited enzyme is quite large.14 As is also shown 
in Figure 2, the enzyme is protected from inhibition by the 
natural substrate, dihydroxyacetone phosphate, DHAP. The 
Km for DHAP computed from these data, 1.5 X 10~6 M, is 
smaller than the Km measured by fluorescence,16 4.5 X 1O-6 

M. Since the literature value was determined in the presence 
of Cl - , a known reversible inhibitor of aldolase, these values 
are not inconsistent. The disappearance of inhibitory ability 
in solutions of 2 kept at 25 0C and pH 7.0 parallels the slow 
conversion of 2 to 4b as followed spectrophotometrically. In 
contrast to 2, methyl vinyl ketone exhibits a much slower in­
activation of aldolase and that inactivation is not completely 
prevented by high concentrations of DHAP. A possible 
mechanism for the inactivation of aldolase by 2 is that shown 
in Scheme I. 
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Hexaradialene 

Sir: 

Of the parent radialenes1 only [3]-2 and [4]radialene3 (1 and 
2) have been isolated as air-sensitive, reactive hydrocarbons. 
Several stable, substituted radialenes are known4 including 
hexaalkylated hexaradialenes.1,5 The latter appear to minimize 
nonbonded interactions by adopting a nonplanar cyclohexane 
chair-type conformation6 devoid of 6ir-electronic derealiza­
tion. The parent hexaradialene (hexamethylenecyclohexane) 

\ 

./-

(3) is of considerable theoretical7 and synthetic interest be­
cause of its potentially stabilizing benzenoid topology, its po­
tential as a synthon for the construction of polycyclic nuclei, 
and as a possible precursor to the strained tricyclobutabenzene 
48 and the elusive cyclophane 5, respectively. 

/// % 

Recently we reported that 1,5,9-cyclododecatriyne (6)9 

reacted with dimethyl maleate at 230 0C to give a triadduct 
formally derived from 4 via sequential four-ring opening or, 
alternatively, from 3 via threefold cycloaddition.10 Since in the 
absence of trapping agent extensive polymerization occurred 
we decided to investigate the gas phase thermochemistry of 
6. 

Sublimation of 6 through a hot quartz tube (650 0C (10 -3 

Torr)) and collection of the pyrolysate at —196 0C gave a 
colorless brittle solid which turned dark on warming. Vacuum 
transfer of solvent (toluene-dg) onto the pyrolysis product or, 
alternatively, collection of the pyrolysate on a frozen solvent 
covered glass surface allowed on warming the rapid extraction 
of nonpolymerized materials and transfer into an NMR tube 
which was vacuum sealed. In addition to starting material (T 
7.62, toluene-rfg) a new sharp singlet was observed in the ole-
finic region (r 4.69). This signal disappeared after several 
hours at room temperature or instantly on exposure of the 
sample to air with concomitant deposition of a brown flocculent 
precipitate. No new absorptions appeared in the NMR spec­
trum. Gas phase pyrolysis of 6 at 850 °C led to complete dis­
appearance of starting material (NMR). A mass spectrum of 
this product gave a parent ion at m/e 156. 

Hydrogenation of the pyrolysate prepared at 650 0C (Pd/C, 
ether, —65 0C to room temperature) gave11 nearly equal 
amounts of naphthalene,'2 hexamethylbenzene,'2 and cyclo-
dodecane,12-in addition to several unidentified products. 
Analysis'' of the air-oxidized crude pyrolysate of 6 (generated 
at 650 0C) indicated a multitude of products including starting 
material and naphthalene, but no hexamethylbenzene. Deu-
teration of the pyrolysis product gave hexakis(deuter-
iomethyl)benzene.n 

Gas phase pyrolysis of 6 at temperatures above 850 0C gave 
rise to increasing amounts of volatile but stable butatriene, 
identified by its singlet NMR singlet at r 4.65 and by com­
parison with authentic material.13,14 Pyrolysis of butatriene3 

under the above conditions gave recovered starting materi­
al. 

The observed experimental data are most easily accom­
modated by the assumption that cyclododecatriyne 6 under­
goes pyrolytic conversion to hexaradialene (3), a highly reac­
tive compound seemingly devoid of any stabilizing "aromatic" 
features and comparable in its properties with the other known 
radialenes 1 and 2.15 If one invokes 4 as a likely intermediate 
in this transformation, then the reported data lead to the 
somewhat surprising conclusion that radialene 3 enjoys higher 
thermal stability than benzene 4. Thermochemical calcula­
tions16,17 (Figure 1) seem to support this view. Thus, even a 
hypothetical, fully "aromatic" 4 (AHf = 93 kcal/mol) is es­
timated to be at least 11 kcal/mol higher in energy than 
(nonplanar) 3.18 

An alternative approach to rationalize the observed data 
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